APPENDIX N

SBR DESIGN SPREADSHEET MODEL AND ACTIVATED SLUDGE SPREADSHEET MODEL

City of Woodland General Sewer Plan

SBR REV

SBR Design Spreadsheet Model

Parameter	Recent (2009-13)	Projected	Maximum	Comments
	Annual Avg.	2033	Capacity	
Max Month Flow, MGD	0.504	0.960	2.000	
BOD, mg/L	271	279	159	
BOD, lb/day	1141	2237	2650	
sBOD, lb/day	251	492	583	
COD, lb/day	2510	4921	5830	
bCOD, lb/day	1826	3579	4240	
sCOD, lb/day	552	1083	1283	
TSS, mg/L	335	325	189	
TSS, lb/day	1407	2602	3160	
VSS, lb/day	1126	2082	2528	
TKN, mg/L	50	51	30	
TKN, lb/day	209	405	200	
Inert TSS, mg/L	281	520	632	
nbVSS, lb/day	307	268	689	
Temperature, C	10	10	10	Winter design temp = 10C, summer design temp = 22C
Elevation, ft	30	30	30	
Kinetic and Stoichiometric Values				
Influent VSS/TSS ratio	0.80	0.80	8.0	
Influent COD/BOD5 ratio	2.20	2.20	2.20	Typical value
Influent bCOD/BOD5 ratio	1.60	1.60	1.60	
Influent sBOD5/BOD5 ratio	0.22	0.22	0.22	
Influent sCOD/COD ratio	0.22	0.22	0.22	
Influent rbCOD/COD ratio	0.155	0.155	0.155	
Influent NH4/TKN ratio	0.67	0.67	0.67	
Y (Ib VSS/Ib bCOD)	0.45	0.45		M&E, 5th Ed., Table 8-14
kd(20) (1/d)	0.12	0.12		M&E, 5th Ed., Table 8-14
kd(T) (1/d)	0.081	0.081		$[kd(20)] * (1.04 ^{\land} ([T]-20))$
p-J	0.15	0.15		M&E, 5th Ed., Table 8-14
Yn (lb VSS/lb TKN)	0.15	0.15		M&E, 5th Ed., Table 8-14
Un-max(20)	6.0	6.0		M&E, 5th Ed., Table 8-14

SBR REV

Comments	[Umax(20)] * (1.072 ^ ([T]-20)) M&E, 5th Ed., Table 8-14 [kdn(20)] * (1.029 ^ ([T]-20)) M&E, 5th Ed., Page 777 [kdn(20)] * (1.029 ^ ([T]-20))	M&E, 5th Ed., Table 8-14 [KsNH4(20)] * (1.0 ^ ([T]-20)) M&E, 5th Ed., Table 8-14 {Umax(T)*([NH4]/([NH4]+KsNH4(T)))*([DO]/([DO]+KsDO))}-kd				
Maximum Capacity	0.449 0.17 0.028 0.053 0.090	1 2 0.5 0.50 0.5 0.5 0.5	10 10	3 13 21 0.348 0.562	5 4.8 0.45 1.15 1.25 0.95 1.00	1.60
Projected 2033	0.449 0.17 0.128 0.07 0.053 0.090	1 2 0.5 0.50 0.5 0.15	10 10	3 13 21 0.348 0.562	5 4.8 0.45 1.15 1.25 0.95 1.00	1.60
Recent (2009-13) Annual Avg.	0.449 0.17 0.128 0.07 0.053 0.090	1 2 0.5 0.50 0.5 0.15	10 10	2 13 21 0.348 0.562	4 6.0 1.25 1.75 1.25 0.92 0.83	3.00
Parameter	Un-max(T) kdn(20) (1/d) (Aerobic) kdn(T) (1/d) (Aerobic) kdn(20) (1/d) (Anoxic) kdn(T) (1/d) (Anoxic) kdn(T) (1/d) (Cycle Avg.)	MLSS NH4 (mg/L) MLSS DO (mg/L) KsNH4(20) (mg/L) KsNH4(T) (mg/L) KsDO (mg/L) Unet(T)	EFFLUENT CRITERIA Effluent BOD, mg/L Effluent TSS, mg/L Effluent NH4-N, mg/L	PHYSICAL LAYOUT Number of Tanks Min. Liquid Depth, ft Max. Liquid Depth, ft Min. Volume per Tank, MG Max. Volume per Tank, MG	OPERATIONAL DESIGN # of Cycles/day Cycle Time, Tc,hr Select Fill/Denit Time, Tf,hr Select Fill/Aerate Time, Tfa,hr React/Aerate Time, Ta, hr Settle Time, Ts, hr Decant Time, Tw, hr Idle Time, Ti, hr	Total Fill time, hr Total Aeration time, hr

SBR REV

Parameter	Recent (2009-13) Annual Avg.	Projected 2033	Maximum Capacity	Comments
INITIAL DESIGN CRITERIA Max High water MLSS, mg/L Design Max SVI, ml/g Selected max. decant fraction	3000 155 33%	3000 155 33%	3000 155 33%	G&O Design Criteria based on Operational History 90%ile SVI at Woodland = 152 From Figure 8-21, M&E 5th Ed. (4000 mg/L & SVI=155)
RESULTS Total Cycles per Day Fill Volume per Cycle, MG Fill Vol/Total Vol Min. Volume per Tank, MG Min. Water Level, ft HRT at Max. Volume, hr	8 0.063 11% 0.499 18.6 53.5	15 0.064 11% 0.498 18.6 42.1	15 0.1333 24% 0.429 16.0 20.2	
Max. Sludge Mass per tank, Ibs Oxic Phase Design Min Aerobic SRT (calc) (d)	14058	14058	14058	At max level
Min Aerobic SRT (safety) (d) SRT (design) (d)	8.4 28.7	8.4 21.5	8.4 17.28	[SRT (calc)] * 1.25
SRT (design) (d) Aerobic SRT (design) (d) Effl sbCOD (mg/L)	28.7 14.4 8	21.5 10.8 8	17.28 8.6 8	Iterated with Px-TSS to match mass Based on ratio of aerated to total cycle time
Effl sbCOD S-o (lb/day) Effl TKN (mg/L) WAS Org-N (lb/day) TKN-ox (lb/day) (calc'd)	34 3 40.0 156.4	64 3 89.1 291.9	133 3 114.1 336	[Effl sbCOD] * [Q] * 8.34)
TKN-ox (lb/day) (iter.) Px (lb TSS/day)	156.4 981	291.8 1961	336 2440	[Infl TKN] - ([Effl TKN] * [Q] * 8.34)
Px-VSS (lb VSS/day) Px-bio (lb VSS/day) MLVSS (mg/L) MLVSS/MLSS ratio TKN-ox per cycle (lb) NH4 left after decant (lb) Initial NH4 conc (mg/L) Nitrifier conc (mg/L) Min. aeration time (hr)	641 333.5 1961 0.65 19.6 4 5.1 40	1310 742.3 2004 0.67 19.5 4 5.0 68	1641 951 2017 0.67 22.4 4 5.5 73	$ \frac{[Y]^*([\ln f] b COD] - [Eff] s b COD]}{(1 + ([K_{d(\Gamma)}]^* [SRT]))^* \nu} $ $ [f_d]^*[K_{d()}]^*[Y]^*([\ln f] b COD] - [Eff] s b COD])^*[SRT] $ $ \frac{[I_n]^*[TKN_{ox}]}{(1 + ([K_{dV(\Gamma)}]^*[SRT]))^* \nu} + [nbVSS] + [iTSS] $

Parameter	Recent (2009-13) Annual Avg.	Projected 2033	Maximum Capacity	Comments
Px {A}	242	577	770	
Px {B}	85	151	162	
Px-N {C}	6.5	14.9	19.7	
Px {nbVSS}	307	568	689	
Px {iTSS}	281	520	632	
Denitification Design (Pre-Denit in Mix	ed Fill Phase)			
Effluent Nitrate conc. (mg/L)	4.2	4.2	4.8	
Nitrate after decant (lbs/cycle) 17.4	17.4	17.2	17.1	
Xb biomass conc. (mg/L)	742	882	946	
F/Mb during fill	0.33	0.54	09.0	
SDNR during mixed fill	0.077	0.093	0.116	M&E, 5th Ed., Fig. 8-31, rbCOD = 0.15
Max Nox-R per cycle (lb/cycle)	14	7	10	
Actual Nox-R per cycle (lb/cycle)	14.0	7.2	9.6	
Nox Remaining after cycle (lbs)	9	12	13	
Decant Rate, GPM	1260	1067	2222	
Current Decant Capacity, GPM	3333	3333	3333	
Aeration Requirement				
Actual Oxygen Req AOR (Ib/day)	1712	3486	3878	Includes denit credit
AOR per cycle (lb/cycle)	214	232	259	
AOR rate (lb/hr)	71	76	108	
AOR peaking factor	1.67	1.67	1.67	Per M&E, 5th Ed., for high demand at start of cycle, peak loadings
Design AOR rate (lb/hr)	119	162	180	
Ecology Design Criteria				
Mass loading rate (lbs BOD5/day/1000 ft?	6 3	11	15	At low water level, $\max = 15$
F/M ratio (1b BOD5/1b MLVSS)	90.0	0.08	0.09	At max water level, $max = 0.10$

Activated Sludge Spreadsheet Model

Activated Sludge Spreadsheet Model		Recent (2009-13) Annual Avg.	Projected 2033	Maximum Capacity	Comment
Oxygen Requirements 1 AOR per cycle	lb/hr	119	162	180	AOR per basin during the aerated periods
Standard Oxygen Requirement AOR = $SOR * alpha((beta*CSW - CL)/CST)*1.024^{(T-20)}$.)/CST)*1	.024^(T-20)			
2 alpha 3 beta		0.85 0.96	0.85 0.96	0.85 0.96	O2 transfer in WW/O2 transfer in clean water (0.85 per Aqua Aerobics O2 saturation in WW/O2 saturation in clean water
4 CSW	mg/L	11.28	11.28	11.28	Saturation of O2 at operating temperature and pressure
S CL 6 CST	mg/L mg/L	2.00 9.08	2.00	2.00 9.08	Desired Operating O2 concentration Saturation of O2 at sea level at 20°C
7 T	် လ	10	10	10	Winter minimum temperature
8 AOR/SOR Ratio 9 SOR per basin	lb/hr	0.65	0.65	0.65	$[2]*(([3]*[4]-[5])/[6])*1.024^([7]-20)$ standard oxygen requirement per basin during the aerated periods
Fine Bubble Diffuser Efficiency					
10 Per-Foot Diffuser Efficiency	ft-1	0.87%	0.87%	0.87%	Transmax - per Aqua Aerobic calcs
11 Avg. Depth of Basin	ft	18	18	18	Avg. Side water depth (LWL = 13', HWL = 21')
12 Depth of Submergence	ft	17	17	17	[12]-1
13 Fine Bubble Diffuser Efficiency		15%	15%	15%	[10]*[12]
14 Air Flow Required/Basin 15 Maximum basins in aeration simult.	scfm	1190 1	1616 2	1797 2	[9]*(1 scf/0.0173 lb O2)*(1 d/1440 min)/[13]
16 Ratio of aerated react time to meet SOR	æ	63%	%98	%96	With 1 set of blowers in service
17 Quantity of blowers18 Air Flow Required per 50 hp Blower19 Air Flow Required per 75 hp Blower	scfm	3 397	5 539 808	5 599 899	at standard temperature and pressure at standard temperature and pressure
Inlet Volume o	scfm psi	1190	1616 14.7	1797	Va=Vs*((Ps-(RHs*PVs))/(Pb-(RHa*PVa)))*(Ta/Ts)*(Pb/Pa) Inlet flow of air at standard temperature and pressure standard pressure of air (=1.0 atm)
22 KHS 23 PVs 24 Pb	psi psi	0.36 0.26 14.69	0.26 14.69	0.36 0.26 14.69	standard relative numidity vapor pressure of water @ std temperature and pressure design atmospheric pressure

City of Woodland 2014 General Sewer Plan

Mode
Spreadsheet
Sludge S
Activated

			Recent (2009-13) Annual Avg.	Projected 2033	Maximum Capacity	Comment
xygen Requirements	so					
25 R	Ha		0.80	0.80	0.80	design relative humidity
	PVa	psi	0.95	0.95	0.95	vapor pressure of water at design temperature and pressure
	Та	°R	550	550	550	design temperature (=100°F)
28	Ts	$^{\circ}\mathbf{R}$	520	520	520	standard temperature (=60°F)
	Pa	psi	14.68	14.68	14.68	design pressure at inlet
	Va	icfm	1322	1793	1995	Inlet flow of air at design conditions, from above equation
Blower Discharge Pressure	e Pressure					
31 Max. Diffuser submergence		ff	20	20	20	1' above bottom of aeration basins
32 static submergence pressure		psi	8.70	8.70	8.70	[31]/2.3
33 Equivalent length		ft	100	100	100	approximate - pipe not designed yet
34 Unit Headloss in 6" pipe		i/100ft	0.3	0.3	0.3	from friction loss chart
35 Friction headloss	ı	psi	0.3	0.3	0.3	
36 Silencer headloss		psi	0.1	0.1	0.1	
37 Air filter pressure drop		psi	0.1	0.1	0.1	
38 Air diffuser headloss		psi	0.5	0.5	0.5	
39 Discharge Pressure		psi	9.70	9.70	9.70	rounded up to nearest 0.1 psi