LOGAN'S LANDING

Woodland, WA

TRAFFIC IMPACT ANALYSIS (TIA)

July 31, 2023

HEATH\&ASSOCIATES

Transportation Planning \& Engineering

LOGAN'S LANDING TRAFFIC IMPACT ANALYSIS

Prepared for:
Mr. Shayne Olsen
Logan Partners, LLC
shayne@saceinc.com

Prepared by:

Heath \& Associates
PO Box 397
Puyallup, WA 98371
(253) 7701401

Heathtraffic.com

License:

LOGAN'S LANDING TRAFFIC IMPACT ANALYSIS

CONTENTS

1. Introduction 4
2. Project Description 4
3. Existing Conditions 6
4. Forecast Traffic Demand \& Analysis. 10
5. Conclusions \& Mitigation 17
TABLES
6. Existing Weekday Peak Hour Level of Service. 10
7. Project Trip Generation 12
8. Forecast 2026 Weekday Peak Hour Level of Service 16
FIGURES
9. Vicinity Map 4
10. Conceptual Site Plan 5
11. Existing PM Peak Hour Volumes 9
12. PM Peak Hour Trip Distribution \& Assignment. 13
13. Forecast 2026 PM Peak Hour Background Volumes 14
14. Forecast 2026 PM Peak Hour Volumes With Project 15

LOGAN'S LANDING TRAFFIC IMPACT ANALYSIS

1. INTRODUCTION

The main goals of this study focus on the assessment of existing roadway conditions and forecasts of newly generated project traffic. The first task includes the review of general roadway information on the adjacent street system and baseline vehicular volumes. Forecasts of future traffic and dispersion patterns on the street system are then determined using established trip generation and distribution techniques. As a final step, appropriate conclusions and mitigation measures are defined if needed.

2. PROJECT DESCRIPTION

Logan's Landing is a proposed mixed-use development located within the city of Woodland. The subject site is located west of Old Pacific Highway and south of Belmont Loop. The subject site, comprised of four parcels (\#: 50680023, 50714, 50729 and a portion of 50730), is situated on approximately 20 acres of undeveloped land. Development is proposed to consist of eight buildings, each with 5,080 square feet of office/retail space on the bottom floor (40,640 square feet total) and the top floors will consist of a total of 34 apartments units (272 total units on-site). Access to and from the subject site is proposed via a southerly extension of Franklin Street by way of Belmont Loop. Moreover, this Franklin Street roadway extension is proposed to provide direct connection to Old Pacific Highway via parcel \#: 50714 upon full site build-out. Figure 1 below depicts the roadway network servicing the subject site.
Figure 2 on the following page highlights the site layout.

3. EXISTING CONDITIONS

3.1 Existing Street System

The street network serving the proposed project consists of a variety of roadways. The major roadways and arterials surrounding the site are listed and described in Table 1 below.

Table 1: Roadway Network

Functional Classification	Roadway	Speed Limit	Travel Lanes	Street Parking	Sidewalk	Bike Facilities
Minor Arterial	Dike Access Rd	$35-\mathrm{mph}$	2	No	Discontinuous	No
	Old Pacific Hwy	$35-\mathrm{mph}$	2	No	Discontinuous	No
	Lewis River Rd	$35-\mathrm{mph}$	2	No	Discontinuous	No
Local	Belmont Loop	$25-\mathrm{mph}^{*}$	2	Yes	Discontinuous	No

* No posted speed limit observed so 25 mph assumed.

3.2 Transit Service

No transit is available within walking-distance of the subject site. The nearest public transit is provided at the Woodland Park \& Ride, located ~ 1.5-miles south of the subject site. The Lower Columbia CAP (Community Action Program) provides weekday transit service from Longview to Vancouver, with stops in Woodland and Kalama. Service is available from 6:35 AM - 6:28 PM with approximately 120-minute headways. Refer to the CAP schedule for more detailed information.

Given the proximity of the Woodland Park \& Ride to the proposed development, residents may utilize transit services.

3.3 Non-Motorist Infrastructure

Discontinuous segments of sidewalk are available along Belmont Loop, adjacent developed tax parcels. The surrounding area, including Old Pacific Highway, is rural in nature with minimal non-motorist infrastructure available. The Franklin Street roadway extension will be constructed as part of site development, providing sidewalk infrastructure.

3.4 Roadway Improvements

A review of the City of Woodland's Six-Year Transportation Improvement Program (2023-2028) indicates that the following projects are currently planned in the vicinity of Logan's Landing development.

Table 2: Transportation Improvement Projects

Name	Location	Improvement	Cost
SR 503 Bypass (WA-11289)	Lewis River Rd to OPH	Construct a new roadway to bypass SR 503 extending from Lewis River Rd to OPH thereby providing a more direct route with access via I5/Dike Access Rd	TBD
OPH Sidewalks (WA-14418)	OPH: Belmont Loop to E Scott	Install sidewalks and ADA ramps along roadway	TBD
Hillsdale OPH Ext. (WA-11272)	OPH to Green Mtn.	Extend Hillsdale Dr from its current terminus point at Green Mtn Rd easterly to OPH (roughly mid-point btw Belmont Lp N and S). Phase 1 is expected to begin in 2026. Project cost/funding status are TBD.	TBD
Green Mt./OPH (WA-11271)	Intersection	Construct intersection improvements	TBD
Franklin Loop/OPH (WA-11269)	Franklin Loop	Extend Franklin southerly from its current terminus point ~275' s/o Belmont, jogging easterly to tie into OPH at Woodland View. A portion of this project would be constructed as part of Logan's Landing.	TBD
Franklin/E Scott Ext. (WA-11270)	Franklin Loop	Extend Franklin southerly from the above project to E Scott. Phase 1 is expected to commence in 2027. Project cost/funding status are TBD.	TBD
$\begin{aligned} & \text { E Scott/OPH } \\ & \text { (WA-05177) } \end{aligned}$	Intersection	Construct intersection improvements. Final design is TBD.	\$3,200,000
W Scott Ave Full Depth Reclamation (WA-05176)	W. Scott Ave: Schurman Way to Pac. Ave.	Full depth reclamation and sidewalks. Project will coordinate with separately funded Pedestrian and Water line RR crossing projects.	\$2,207,996
SR-503 Safety Project (WA-12751)	N Goerig to Gun Club Rd	Install sidewalk, planter strips, curb \& gutter, bike route, crosswalk w/ signage \& RRFBs	\$1,514,080
W Scott/Pacific Slip Lane (WA -11286)	W Scott/Pacific	Construct a slip lane	TBD
Scott Hill Connectors (WA-11288)	Scott Hill	Provide roadway connections between Meriwether and Scott Hill	TBD
Scott Ave Reconnection (WA-06621)	Scott Ave	Engineering, design, and construction of Scott Avenue crossing at l-5	\$81,000,000

3.5 Existing Peak Hour Volumes

Field data for this study was obtained and collected by our firm in June of 2023 at the following study intersections:

1. Dike Access Road \& I-5 Southbound Ramps
2. Dike Access Road \& I-5 Northbound Ramps
3. Old Pacific Highway \& Belmont Loop N
4. Old Pacific Highway \& Belmont Loop S
5. Old Pacific Highway \& Green Mountain Road
6. Old Pacific Highway \& E Scott Avenue
7. Lewis River Road \& E Scott Avenue

Counts were performed between the PM peak period of 4:00 PM - 6:00 PM, which generally represents peak roadway conditions during a typical 24 -hour period. The single hour exhibiting highest overall intersection volumes is then derived (peak hour) and is used for analysis for each respective location. Figure 3 on the following page identifies baseline PM peak hour volumes. Full count sheets have been attached in the appendix for reference.

It should be noted that the prior Logan's Landing TIA (3/10/2022) derived baseline PM peak hour volumes consistent with methodologies utilized in the Oak Village Apartments TIA (8/19/2021) by Lancaster Mobley. Traffic patterns and volumes were presumably depressed by the ongoing COVID-19 pandemic at the time both reports were conducted. As such, baseline intersection volumes were established by grossing up historic 2019 pre-COVID counts by a compound annual growth rate of 2.3 percent, as well as by adjusting up 2021 counts by a derived factor of 1.3881 . However, as traffic conditions are presumed to now have stabilized in 2023, all new counts have been gathered, which are anticipated to accurately reflect baseline conditions. This is corroborated by 2023 total intersection volumes gathered by our firm at the Dike Access Road I-5 Ramps, which comprise similar travel patterns and volumes to pre-COVID counts utilized for the Oak Village Apartments TIA.

Lastly, non-motorist volumes were observed at the Old Pacific Highway intersections located in closest proximity to the subject site. No pedestrians or bicycle transport were observed along Old Pacific Highway at Belmont Loop (North or South) or at Green Mountain Road. Given the rural nature of surrounding development, the subject site is not anticipated to be a significant generator of non-motorist traffic.

3.6 Level of Service

Existing intersection delays were determined through the use of the Highway Capacity Manual 7th Edition. Capacity analysis is used to determine level of service (LOS) which is an established measure of congestion for transportation facilities. The range ${ }^{1}$ for intersection level of service is LOS A to LOS F with the former indicating the best operating conditions with low control delays and the latter indicating the worst conditions with heavy control delays. Detailed descriptions of intersection LOS are given in the 2016 Highway Capacity Manual. Level of service calculations were made through the use of the Synchro 12 and SIDRA 9.1 analysis programs. For roundabouts and all-way stop-controlled (AWSC) intersections, LOS is determined by the intersection's overall weighted average delay for each approaching leg. Sidestreet stop-controlled intersection LOS is determined by the approach with the highest delay. Table 3 presents existing PM peak hour LOS delays for the key intersections of study.

Table 3: Existing Weekday PM Peak Hour Level of Service

Intersection	Control	Movement	LOS	Delay
I-5 SB Ramps \& Dike Access Rd	RAB	Overall	A	7.6
I-5 NB Ramps \& Dike Access Rd	RAB	Overall	A	8.2
Belmont Loop N \& Old Pacific Hwy	TWSC	EB	C	16.32
Belmont Loop S \& Old Pacific Hwy	TWSC	EB	B	12.96
Green Mtn Rd \& Old Pacific Hwy	TWSC	WB	B	12.67
E Scott Ave \& Old Pacific Hwy	AWSC	Overall	B	11.6
E Scott Ave \& Lewis River Rd	RAB	Overall	A	6.9

The City of Woodland has adopted LOS D standards. Existing PM peak hour conditions at the study intersections are shown to operate with delays at LOS C or better. As such, the study intersections meet City standards under existing conditions.

```
1 Signalized Intersections - Level of Service
            Control Delay per
\begin{tabular}{cc} 
Level of Service & Vehicle \((\mathrm{sec})\) \\
\cline { 1 - 1 } & \(\leq 10\) \\
B & \(>10\) and \(\leq 20\) \\
C & \(>20\) and \(\leq 35\) \\
D & \(>35\) and \(\leq 55\) \\
E & \(>55\) and \(\leq 80\) \\
F & \(>80\)
\end{tabular}
```

Highway Capacity Manual, 7th Edition

Stop Controlled Intersections - Level of Service Control Delay per Level of Service	Vehicle (sec)
A	≤ 10
B	>10 and ≤ 15
C	>15 and ≤ 25
D	>25 and ≤ 35
E	>35 and ≤ 50
F	>50

4. FORECAST TRAFFIC DEMAND \& ANALYSIS

4.1 Project Trip Generation

Trip generation is used to determine the magnitude of project impacts on the surrounding street system. This is usually denoted by the quantity or specific number of new trips that enter and exit a project during a designated time period, such as a specific peak hour (AM or PM) or an entire day. Data presented in this report was taken from the Institute of Transportation Engineer's publication Trip Generation, 11th Edition. It should be noted that the ground-level commercial space users are unknown at this time. The commercial space is anticipated to be split roughly half between general office and half as general retail. As such, the designated land uses for this project are defined under Land Use Code (LUC) 220 - Multi-Family (Low-Rise) Apartments (272 dwelling units), LUC 710 - General Office (20,320 square feet) and LUC 821 - Strip Retail Plaza (<40k: 20,320 square feet).

It should be noted that the proposed project is anticipated to generate trips from internal capture (i.e., customers/residents already on-site) and pass-by (i.e., customers already on the adjacent street system) in addition to new trips. Concerning internal capture, a single trip entering the site for one facility may subsequently use a variety of other services offered on-site. Moreover, residents within the multi-family space may utilize commercial/retail services on-site. The complimentary uses on-site are anticipated to generate an internal trip capture reduction of 5.1% in the AM peak hour and 21.5% in the PM peak hour as derived via the NCHRP 8-51 Internal Trip Capture Estimation Tool. Also considered are pass-by trips, or motorists already passing by the site who decide to make an intermediate stop before proceeding to their primary destination. Pass-by percentages were applied to the proposed 20,320 square feet of strip retail space on-site based on ITE data. These trips are not considered as new trips but will impact the site's access points.

Table 4 on the following page summarizes the estimated aggregate project trip generation. Included are the average weekday daily traffic (AWDT) and the AM and PM peak hours. Available in the appendix is a use-specific breakdown including rates used for calculations.

Table 4: Project Trip Generation

Trip Type	AWDT	AM Peak-Hour Trips			PM Peak-Hour Trips		
		In	Out	Total	In	Out	Total
Total Trips	3160	82	106	$\mathbf{1 8 8}$	159	143	$\mathbf{3 0 2}$
Internal Link Reduction 2	-420	-6	-4	$\mathbf{- 1 0}$	-34	-31	$\mathbf{- 6 5}$
Pass-By Reduction 3	-384	-9	-9	$\mathbf{- 1 8}$	-21	-21	$\mathbf{- 4 2}$
Total New Primary	2356	67	93	$\mathbf{1 6 0}$	104	91	$\mathbf{1 9 5}$

As summarized in Table 4, trips to and from the site are broken into internal capture, pass-by and primary. In total, 2,356 new primary vehicular trips per weekday are expected as a result of the proposed development with 160 primary trips occurring during the AM peak hour and 195 primary trips occurring during the PM peak hour. Moreover, approximately 18 AM peak hour and 42 PM peak hour trips are anticipated to be generated from the development in the form of pass-by.

4.2 Distribution \& Assignment

Trip distribution describes the anticipated travel routes for inbound and outbound project traffic during the peak hour study period. PM peak hour trips are primarily comprised of commuter-based (returning home) and recreational-based trips. Primary and pass-by PM peak hour trips generated by the project are expected to follow the general pattern as shown in Figure 4. Percentages emulate prior submittals for the Logan's Landing project. An approximate $75 / 25$ north/south split is anticipated for both primary and pass-by trips. Trips were assigned to the Belmont Loop South \& Old Pacific Highway intersection via the Franklin Street extension. Moreover, trips were additionally assigned to the newly proposed Franklin Street extension connection to Old Pacific Highway via tax parcel \#: 50714.

4.3 Future Peak Hour Volumes

A three-year horizon of 2026 was used to analyze future conditions. Background volumes at the intersections of study were derived by applying a 2.3 percent compound annual growth rate to the existing volumes illustrated in Figure 3. This growth rate was derived from the City's Comprehensive Plan based on their population growth forecasts. Moreover, pipeline volumes from the Oak Village Apartments project were accounted for in forecast volumes. Figures 5 and 6 represent forecast 2026 PM peak hour volumes without and with project traffic.

[^0]

4.4 Future Level of Service

Level of service analyses were made of the future PM peak hour volumes without (background) and with project related trips added to the key roadways and intersections. This analysis once again involved the use of the Synchro 12 and SIDRA 9.1 analysis programs. Delays for the study intersections under future conditions are shown below in Table 5.

Table 5: Forecast 2026 Weekday Peak Hour Level of Service
Delays Given in Seconds per Vehicle
Without Project With Project

Intersection	Control	Peak Hour	LOS	Delay	LOS	Delay
 Dike Access R	RAB	Overall	A	9.3	B	11.7
 Dike Access Rd	RAB	Overall	A	9.0	A	9.8
 Old Pacific Hwy	TWSC	EB	C	19.27	C	24.13
 Old Pacific Hwy	TWSC	EB	B	14.13	C	18.89
 Old Pacific Hwy	TWSC	WB	C	15.01	C	16.11
 Old Pacific Hwy	AWSC	Overall	B	12.7	B	13.8
 Lewis River Rd	RAB	Overall	A	8.1	A	8.5
 Old Pacific Hwy	TWSC	EB	-	-	B	14.69

Forecast 2026 weekday peak hour delays are shown to operate with up to LOS C conditions with or without the proposed development at all study intersections. As such, no level of service deficiencies are identified and all intersections meet City standards.

It should be noted that the City's Six-Year Transportation Improvement Plan has budgeted approximately $\$ 3,200,000$ for improvements at E Scott Avenue \& Old Pacific Highway. While specific improvements were not identified under their current plan, conditions would likely subsequently improve by reducing delays and increasing capacity. Moreover, several City-planned projects were additionally identified within the study area that would result in improved conditions. These include intersection improvements at Old Pacific Highway \& Green Mountain Road, the SR 503 Bypass project and other street connections and extensions, which are anticipated to further expand travel routes and provide relief along certain corridors.

4.5 Project Access \& Sight Distance

The primary access intersections of Belmont Loop Road \& Franklin Street as well as newly proposed connection of Old Pacific Highway \& Franklin Street were examined in terms of available sight lines. The established city of Woodland sight distance standards for controlled intersections were utilized. With no observed posted speed on Belmont Loop, the local access roadway was assumed to comprise a $25-\mathrm{mph}$ speed limit. As such, approximately 250 -feet of visibility would be required for traffic departing Franklin Street entering Belmont Loop. Based on a review of the existing intersection geometry, sight lines are available to 280-feet in the east/west directions with clear visibility to Old Pacific Highway. No sight distance deficiencies are identified at the intersection.

Moreover, approximately 350 feet of entering sight distance would be required at Old Pacific Highway \& Franklin Street based on the $35-\mathrm{mph}$ posted speed limit. Preliminary measurements at the access intersection indicate sight lines are available north and south in excess of 500 feet. No sight distance deficiencies are identified at this time.

4.6 Left Turn Warrant Analysis

Turn lanes are a means of providing necessary storage space for left turning vehicles at intersections. For this impact study, procedures described by the WSDOT Design Manual Exhibit 1310-7a were used to ascertain storage requirements at a newly proposed roadway connection of Old Pacific Highway \& Franklin Street. Based on the criteria set forth in the warrant calculations, a left turn lane would not be warranted under forecast 2026 PM peak hour conditions at the proposed study intersection. Turn lane exhibit sheets have been included in the appendix.

5. CONCLUSIONS \& MITIGATION

Logan's Landing proposes for the development of 272 multi-family dwelling units and approximately 40,640 square feet of retail/office space within the city of Woodland. The subject site comprises approximately 20 -acres with tax parcel \#'s: 50680023, 50714,50729 and a portion of 50730 . Access to the subject site is proposed via a southerly extension of Franklin Street from Belmont Loop, which bisects the subject site. This extension is proposed to jog easterly, connecting to Old Pacific Highway. A conceptual site plan illustrating the overall configuration of the project and access proposal is provided in Figure 2.

Based on ITE data, the proposed development is anticipated to generate approximately 2356 average weekday daily primary trips with 160 (67 in / 93 out) AM peak hour primary trips and 195 (104 in / 91 out) PM peak hour primary trips. A level of service (LOS) analysis was performed using a three-year horizon which included a background growth rate, pipeline development and project-generated traffic added to the roadway network.

Existing and forecast level of service (LOS) at the outlying study intersections are shown operate acceptably with LOS C or better conditions, meeting City standards. The proposed development is shown to minimally impact the surrounding roadway system. Lastly, a left turn lane warrant analysis was evaluated for the newly proposed connection of Old Pacific Highway \& Franklin Street. A left-turn lane was found to not be warranted at the intersection.

Based on the analysis herein, and with the city planned project, no project-specific mitigation is identified at this time.

LOGAN'S LANDING TRAFFIC IMPACT ANALYSIS

APPENDIX

Heath \& Associates

PO Box 397 Puyallup, WA 98371
Roundabout
File Name : 4855aa
Site Code : 00004855
Start Date : 6/27/2023
Page No : 1

	I-5 S On-Ramp Southbound				Dike Access Rd Westbound				I-5 S Off-Ramp Northbound				Dike Access Rd Eastbound				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	55	1	47	103	0	73	14	87	0	0	0	0	66	127	0	193	383
04:15 PM	37	1	33	71	0	89	29	118	0	0	0	0	56	104	0	160	349
04:30 PM	50	1	35	86	0	88	29	117	0	0	0	0	62	139	0	201	404
04:45 PM	41	2	29	72	0	83	27	110	0	0	0	0	45	154	0	199	381
Total	183	5	144	332	0	333	99	432	0	0	0	0	229	524	0	753	1517
05:00 PM	37	1	30	68	0	58	28	86	0	0	0	0	50	140	0	190	344
05:15 PM	43	0	40	83	0	69	21	90	0	0	0	0	48	127	0	175	348
05:30 PM	64	1	34	99	0	86	21	107	0	0	0	0	47	85	0	132	338
05:45 PM	50	1	26	77	0	60	22	82	0	0	0	0	45	80	0	125	284
Total	194	3	130	327	0	273	92	365	0	0	0	0	190	432	0	622	1314
Grand Total	377	8	274	659	0	606	191	797	0	0	0	0	419	956	0	1375	2831
Apprch \%	57.2	1.2	41.6		0	76	24		0	0	0		30.5	69.5	0		
Total \%	13.3	0.3	9.7	23.3	0	21.4	6.7	28.2	0	0	0	0	14.8	33.8	0	48.6	
Passenger +	367	8	259	634	0	584	181	765	0	0	0	0	405	942	0	1347	2746
\% Passenger +	97.3	100	94.5	96.2	0	96.4	94.8	96	0	0	0	0	96.7	98.5	0	98	97
Heavy	10	0	15	25	0	22	10	32	0	0	0	0	14	14	0	28	85
\% Heavy	2.7	0	5.5	3.8	0	3.6	5.2	4	0	0	0	0	3.3	1.5	0	2	3

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855aa
Site Code : 00004855
Start Date : 6/27/2023
Page No : 2

	I-5 S On-Ramp Southbound				Dike Access Rd Westbound				I-5 S Off-Ramp Northbound				Dike Access Rd Eastbound				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:00 PM																	
04:00 PM	55	1	47	103	0	73	14	87	0	0	0	0	66	127	0	193	383
04:15 PM	37	1	33	71	0	89	29	118	0	0	0	0	56	104	0	160	349
04:30 PM	50	1	35	86	0	88	29	117	0	0	0	0	62	139	0	201	404
04:45 PM	41	2	29	72	0	83	27	110	0	0	0	0	45	154	0	199	381
Total Volume	183	5	144	332	0	333	99	432	0	0	0	0	229	524	0	753	1517
\% App. Total	55.1	1.5	43.4		0	77.1	22.9		0	0	0		30.4	69.6	0		
PHF	. 832	. 625	. 766	. 806	. 000	. 935	. 853	. 915	. 000	. 000	. 000	. 000	. 867	. 851	. 000	. 937	. 939
Passenger +	177	5	130	312	0	322	94	416	0	0	0	0	223	519	0	742	1470
\% Passenger +	96.7	100	90.3	94.0	0	96.7	94.9	96.3	0	0	0	0	97.4	99.0	0	98.5	96.9
Heavy	6	0	14	20	0	11	5	16	0	0	0	0	6	5	0	11	47
\% Heavy	3.3	0	9.7	6.0	0	3.3	5.1	3.7	0	0	0	0	2.6	1.0	0	1.5	3.1

Heath \& Associates

PO Box 397 Puyallup, WA 98371
Roundabout
File Name : 4855ab
Site Code : 00004855
Start Date : 6/27/2023
Page No : 1

Groups Printed- Passenger + - Heavy

	I-5 N On-Ramp Southbound				Old Pacific Hwy Westbound				I-5 N Off-Ramp Northbound				Dike Access Rd Eastbound				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	0	0	0	0	26	45	0	71	13	0	47	60	0	97	82	179	310
04:15 PM	0	0	0	0	26	64	0	90	14	0	55	69	0	82	46	128	287
04:30 PM	0	0	0	0	19	62	0	81	18	0	50	68	0	108	70	178	327
04:45 PM	0	0	0	0	15	56	0	71	15	0	52	67	0	126	81	207	345
Total	0	0	0	0	86	227	0	313	60	0	204	264	0	413	279	692	1269
05:00 PM	0	0	0	0	23	48	0	71	14	0	44	58	0	101	78	179	308
05:15 PM	0	0	0	0	14	42	0	56	21	0	51	72	0	123	62	185	313
05:30 PM	0	0	0	0	12	53	0	65	18	0	52	70	0	91	42	133	268
05:45 PM	0	0	0	0	18	47	0	65	7	0	40	47	0	76	42	118	230
Total	0	0	0	0	67	190	0	257	60	0	187	247	0	391	224	615	1119

Grand Total	0	0	0	0	153	417	0	570	120	0	391	511	0	804	503	1307	2388
Apprch \%	0	0	0		26.8	73.2	0		23.5	0	76.5		0	61.5	38.5		
Total \%	0	0	0	0	6.4	17.5	0	23.9	5	0	16.4	21.4	0	33.7	21.1	54.7	
Passenger +	0	0	0	0	143	403	0	546	114	0	373	487	0	780	490	1270	2303
\%Passenger +	0	0	0	0	93.5	96.6	0	95.8	95	0	95.4	95.3	0	97	97.4	97.2	96.4
Heavy	0	0	0	0	10	14	0	24	6	0	18	24	0	24	13	37	85
\% Heavy	0	0	0	0	6.5	3.4	0	4.2	5	0	4.6	4.7	0	3	2.6	2.8	3.6

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855ab
Site Code : 00004855
Start Date : 6/27/2023
Page No : 2

	I-5 N On-Ramp Southbound				Old Pacific Hwy Westbound				I-5 N Off-Ramp Northbound				Dike Access Rd Eastbound				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:30 PM																	
04:30 PM	0	0	0	0	19	62	0	81	18	0	50	68	0	108	70	178	327
04:45 PM	0	0	0	0	15	56	0	71	15	0	52	67	0	126	81	207	345
05:00 PM	0	0	0	0	23	48	0	71	14	0	44	58	0	101	78	179	308
05:15 PM	0	0	0	0	14	42	0	56	21	0	51	72	0	123	62	185	313
Total Volume	0	0	0	0	71	208	0	279	68	0	197	265	0	458	291	749	1293
\% App. Total	0	0	0		25.4	74.6	0		25.7	0	74.3		0	61.1	38.9		
PHF	. 000	. 000	. 000	. 000	. 772	. 839	. 000	. 861	. 810	. 000	. 947	. 920	. 000	. 909	. 898	. 905	. 937
Passenger +	0	0	0	0	67	200	0	267	65	0	186	251	0	445	282	727	1245
\% Passenger +	0	0	0	0	94.4	96.2	0	95.7	95.6	0	94.4	94.7	0	97.2	96.9	97.1	96.3
Heavy	0	0	0	0	4	8	0	12	3	0	11	14	0	13	9	22	48
\% Heavy	0	0	0	0	5.6	3.8	0	4.3	4.4	0	5.6	5.3	0	2.8	3.1	2.9	3.7

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855ac
Site Code : 00004855
Start Date : 6/27/2023
Page No : 1

Groups Printed- Passenger + - Heavy

	Old Pacific Hwy Southbound			Old Pacific Hwy Northbound			Belmont Loop (North) Eastbound			
Start Time	Right	Thru	App. Total	Thru	Left	App. Total	Right	Left	App. Total	Int. Total
04:00 PM	24	97	121	52	4	56	11	17	28	205
04:15 PM	10	92	102	63	4	67	7	25	32	201
04:30 PM	27	103	130	54	8	62	4	25	29	221
04:45 PM	18	123	141	47	3	50	8	24	32	223
Total	79	415	494	216	19	235	30	91	121	850
05:00 PM	30	94	124	39	7	46	11	23	34	204
05:15 PM	18	129	147	34	5	39	11	26	37	223
05:30 PM	20	85	105	39	4	43	8	31	39	187
05:45 PM	16	76	92	45	7	52	7	19	26	170
Total	84	384	468	157	23	180	37	99	136	784
Grand Total	163	799	962	373	42	415	67	190	257	1634
Apprch \%	16.9	83.1		89.9	10.1		26.1	73.9		
Total \%	10	48.9	58.9	22.8	2.6	25.4	4.1	11.6	15.7	
Passenger +	161	776	937	353	39	392	66	184	250	1579
\% Passenger +	98.8	97.1	97.4	94.6	92.9	94.5	98.5	96.8	97.3	96.6
Heavy	2	23	25	20	3	23	1	6	7	55
\% Heavy	1.2	2.9	2.6	5.4	7.1	5.5	1.5	3.2	2.7	3.4

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855ac
Site Code : 00004855
Start Date : 6/27/2023
Page No : 2

	Old Pacific Hwy Southbound			Old Pacific Hwy Northbound			Belmont Loop (North) Eastbound			
Start Time	Right	Thru	App. Total	Thru	Left	App. Total	Right	Left	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1										
Peak Hour for Entire In	ection	s at 0	30 PM							
04:30 PM	27	103	130	54	8	62	4	25	29	221
04:45 PM	18	123	141	47	3	50	8	24	32	223
05:00 PM	30	94	124	39	7	46	11	23	34	204
05:15 PM	18	129	147	34	5	39	11	26	37	223
Total Volume	93	449	542	174	23	197	34	98	132	871
\% App. Total	17.2	82.8		88.3	11.7		25.8	74.2		
PHF	. 775	. 870	. 922	. 806	. 719	. 794	. 773	. 942	. 892	. 976
Passenger +	92	437	529	165	21	186	33	95	128	843
\% Passenger +	98.9	97.3	97.6	94.8	91.3	94.4	97.1	96.9	97.0	96.8
Heavy	1	12	13	9	2	11	1	3	4	28
\% Heavy	1.1	2.7	2.4	5.2	8.7	5.6	2.9	3.1	3.0	3.2

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855ad
Site Code : 00004855
Start Date : 6/27/2023
Page No : 1

Groups Printed- Passenger + - Heavy

	Old Pacific Hwy Southbound			Old Pacific Hwy Northbound			Belmont Loop (South) Eastbound			
Start Time	Right	Thru	App. Total	Thru	Left	App. Total	Right	Left	App. Total	Int. Total
04:00 PM	8	99	107	57	5	62	7	3	10	179
04:15 PM	2	96	98	62	4	66	4	3	7	171
04:30 PM	4	100	104	60	4	64	6	4	10	178
04:45 PM	2	134	136	50	2	52	9	1	10	198
Total	16	429	445	229	15	244	26	11	37	726
05:00 PM	2	103	105	49	3	52	3	2	5	162
05:15 PM	2	143	145	39	1	40	4	3	7	192
05:30 PM	0	99	99	39	1	40	11	2	13	152
05:45 PM	1	80	81	46	1	47	3	4	7	135
Total	5	425	430	173	6	179	21	11	32	641
Grand Total	21	854	875	402	21	423	47	22	69	1367
Apprch \%	2.4	97.6		95	5		68.1	31.9		
Total \%	1.5	62.5	64	29.4	1.5	30.9	3.4	1.6	5	
Passenger +	21	833	854	383	21	404	45	22	67	1325
\% Passenger +	100	97.5	97.6	95.3	100	95.5	95.7	100	97.1	96.9
Heavy	0	21	21	19	0	19	2	0	2	42
\% Heavy	0	2.5	2.4	4.7	0	4.5	4.3	0	2.9	3.1

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855ad
Site Code : 00004855
Start Date : 6/27/2023
Page No : 2

	Old Pacific Hwy Southbound			Old Pacific Hwy Northbound			Belmont Loop (South) Eastbound			
Start Time	Right	Thru	App. Total	Thru	Left	App. Total	Right	Left	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1										
Peak Hour for Entire In	ection	at 0	0 PM							
04:30 PM	4	100	104	60	4	64	6	4	10	178
04:45 PM	2	134	136	50	2	52	9	1	10	198
05:00 PM	2	103	105	49	3	52	3	2	5	162
05:15 PM	2	143	145	39	1	40	4	3	7	192
Total Volume	10	480	490	198	10	208	22	10	32	730
\% App. Total	2	98		95.2	4.8		68.8	31.2		
PHF	. 625	. 839	. 845	. 825	. 625	. 813	. 611	. 625	. 800	. 922
Passenger +	10	468	478	187	10	197	20	10	30	705
\% Passenger +	100	97.5	97.6	94.4	100	94.7	90.9	100	93.8	96.6
Heavy	0	12	12	11	0	11	2	0	2	25
\% Heavy	0	2.5	2.4	5.6	0	5.3	9.1	0	6.3	3.4

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855ae
Site Code : 00004855
Start Date : 6/27/2023
Page No : 1

Groups Printed- Passenger + - Heavy

	Old Pacific Hwy Southbound			Green Mountain Rd Westbound			Old Pacific Hwy Northbound			
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
04:00 PM	88	17	105	,	8	17	14	56	70	192
04:15 PM	78	21	99	20	4	24	9	47	56	179
04:30 PM	84	20	104	20	5	25	14	43	57	186
04:45 PM	113	28	141	18	7	25	8	33	41	207
Total	363	86	449	67	24	91	45	179	224	764
05:00 PM	79	26	105	15	5	20	16	35	51	176
05:15 PM	109	36	145	14	9	23	11	27	38	206
05:30 PM	87	23	110	16	8	24	10	24	34	168
05:45 PM	65	21	86	12	12	24	11	34	45	155
Total	340	106	446	57	34	91	48	120	168	705
Grand Total	703	192	895	124	58	182	93	299	392	1469
Apprch \%	78.5	21.5		68.1	31.9		23.7	76.3		
Total \%	47.9	13.1	60.9	8.4	3.9	12.4	6.3	20.4	26.7	
Passenger +	681	185	866	116	57	173	90	286	376	1415
\% Passenger +	96.9	96.4	96.8	93.5	98.3	95.1	96.8	95.7	95.9	96.3
Heavy	22	7	29	8	1	9	3	13	16	54
\% Heavy	3.1	3.6	3.2	6.5	1.7	4.9	3.2	4.3	4.1	3.7

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855ae
Site Code : 00004855
Start Date : 6/27/2023
Page No : 2

	Old Pacific Hwy Southbound			Green Mountain Rd Westbound			Old Pacific Hwy Northbound			
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1										
Peak Hour for Entire In	ction	s at 04	0 PM							
04:30 PM	84	20	104	20	5	25	14	43	57	186
04:45 PM	113	28	141	18	7	25	8	33	41	207
05:00 PM	79	26	105	15	5	20	16	35	51	176
05:15 PM	109	36	145	14	9	23	11	27	38	206
Total Volume	385	110	495	67	26	93	49	138	187	775
\% App. Total	77.8	22.2		72	28		26.2	73.8		
PHF	. 852	. 764	. 853	. 838	. 722	. 930	. 766	. 802	. 820	. 936
Passenger +	372	106	478	61	25	86	49	132	181	745
\% Passenger +	96.6	96.4	96.6	91.0	96.2	92.5	100	95.7	96.8	96.1
Heavy	13	4	17	6	1	7	0	6	6	30
\% Heavy	3.4	3.6	3.4	9.0	3.8	7.5	0	4.3	3.2	3.9

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855af
Site Code : 00004855
Start Date : 6/27/2023
Page No : 1

	Old Pacific Hwy Southbound				E Scott Ave Northwestbound				Goerig St Northbound				E Scott Ave Eastbound				
Start Time	Right	Thru	Bear Left	App. Total	Bear Right	Bear Left	Hard Left	App. Total	Hard Right	Thru	Left	App. Total	Right	Bear Right	Left	App. Total	Int. Total
04:00 PM	22	26	49	97	54	11	1	66	0	2	0	2	5	3	11	19	184
04:15 PM	16	24	50	90	48	12	1	61	0	0	0	0	6	6	7	19	170
04:30 PM	17	28	50	95	44	21	3	68	0	1	2	3	6	3	11	20	186
04:45 PM	20	29	69	118	36	13	1	50	0	1	0	1	3	3	6	12	181
Total	75	107	218	400	182	57	6	245	0	4	2	6	20	15	35	70	721
05:00 PM	12	17	55	84	42	17	0	59	0	0	0	0	2	6	8	16	159
05:15 PM	11	36	69	116	23	13	1	37	0	0	2	2	3	5	12	20	175
05:30 PM	11	29	58	98	28	17	1	46	0	0	0	0	5	4	6	15	159
05:45 PM	16	23	38	77	36	10	4	50	0	1	0	1	6	1	8	15	143
Total	50	105	220	375	129	57	6	192	0	1	2	3	16	16	34	66	636
Grand Total	125	212	438	775	311	114	12	437	0	5	4	9	36	31	69	136	1357
Apprch \%	16.1	27.4	56.5		71.2	26.1	2.7		0	55.6	44.4		26.5	22.8	50.7		
Total \%	9.2	15.6	32.3	57.1	22.9	8.4	0.9	32.2	0	0.4	0.3	0.7	2.7	2.3	5.1	10	
Passenger +	116	209	432	757	304	111	12	427	0	4	4	8	35	28	63	126	1318
\% Passenger +	92.8	98.6	98.6	97.7	97.7	97.4	100	97.7	0	80	100	88.9	97.2	90.3	91.3	92.6	97.1
Heavy	9	3	6	18	7	3	0	10	0	1	0	1	1	3	6	10	39
\% Heavy	7.2	1.4	1.4	2.3	2.3	2.6	0	2.3	0	20	0	11.1	2.8	9.7	8.7	7.4	2.9

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855af
Site Code : 00004855
Start Date : 6/27/2023
Page No : 2

	Old Pacific Hwy Southbound				E Scott Ave Northwestbound				Goerig St Northbound				E Scott Ave Eastbound				
Start Time	Right	Thru	Bear Left	App. Total	Bear Right	Bear Left	Hard Left	App. Total	Hard Right	Thru	Left	App. Total	Right	Bear Right	Left	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:00 PM																	
04:00 PM	22	26	49	97	54	11	1	66	0	2	0	2	5	3	11	19	184
04:15 PM	16	24	50	90	48	12	1	61	0	0	0	0	6	6	7	19	170
04:30 PM	17	28	50	95	44	21	3	68	0	1	2	3	6	3	11	20	186
04:45 PM	20	29	69	118	36	13	1	50	0	1	0	1	3	3	6	12	181
Total Volume	75	107	218	400	182	57	6	245	0	4	2	6	20	15	35	70	721
\% App. Total	18.8	26.8	54.5		74.3	23.3	2.4		0	66.7	33.3		28.6	21.4	50		
PHF	. 852	. 922	. 790	. 847	. 843	. 679	. 500	. 901	. 000	. 500	. 250	. 500	. 833	. 625	. 795	. 875	. 969
Passenger +	69	106	214	389	176	56	6	238	0	3	2	5	20	12	34	66	698
\% Passenger +	92.0	99.1	98.2	97.3	96.7	98.2	100	97.1	0	75.0	100	83.3	100	80.0	97.1	94.3	96.8
Heavy	6	1	4	11	6	1	0	7	0	1	0	1	0	3	1	4	23
\% Heavy	8.0	0.9	1.8	2.8	3.3	1.8	0	2.9	0	25.0	0	16.7	0	20.0	2.9	5.7	3.2

Heath \& Associates

PO Box 397 Puyallup, WA 98371

Roundabout

File Name: 4855ag
Site Code : 00004855
Start Date: 6/27/2023
Page No : 1

Groups Printed- Passenger + - Heavy										Int Total
	Lewis River Rd Westbound			Lewis River Rd Northbound			E Scott Ave Eastbound			
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	
04:00 PM	55	82	137	141	26	167	1	54	55	359
04:15 PM	44	75	119	143	20	163	5	51	56	338
04:30 PM	50	80	130	155	15	170	3	50	53	353
04:45 PM	35	93	128	122	14	136	8	61	69	333
Total	184	330	514	561	75	636	17	216	233	1383
05:00 PM	45	82	127	138	17	155	5	58	63	345
05:15 PM	30	76	106	173	15	188	7	70	77	371
05:30 PM	27	97	124	161	12	173	9	55	64	361
05:45 PM	31	77	108	170	18	188	4	41	45	341
Total	133	332	465	642	62	704	25	224	249	1418
Grand Total	317	662	979	1203	137	1340	42	440	482	2801
Apprch \%	32.4	67.6		89.8	10.2		8.7	91.3		
Total \%	11.3	23.6	35	42.9	4.9	47.8	1.5	15.7	17.2	
Passenger +	310	650	960	1187	134	1321	41	434	475	2756
\% Passenger +	97.8	98.2	98.1	98.7	97.8	98.6	97.6	98.6	98.5	98.4
Heavy	7	12	19	16	3	19	1	6	7	45
\% Heavy	2.2	1.8	1.9	1.3	2.2	1.4	2.4	1.4	1.5	1.6

Heath \& Associates

PO Box 397 Puyallup, WA 98371
File Name : 4855ag
Site Code : 00004855
Start Date : 6/27/2023
Page No : 2

	Lewis River Rd Westbound			Lewis River Rd Northbound			E Scott Ave Eastbound			
Start Time	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1										
Peak Hour for Entire In	ction	at 0	00 PM							
05:00 PM	45	82	127	138	17	155	5	58	63	345
05:15 PM	30	76	106	173	15	188	7	70	77	371
05:30 PM	27	97	124	161	12	173	9	55	64	361
05:45 PM	31	77	108	170	18	188	4	41	45	341
Total Volume	133	332	465	642	62	704	25	224	249	1418
\% App. Total	28.6	71.4		91.2	8.8		10	90		
PHF	. 739	. 856	. 915	. 928	. 861	. 936	. 694	. 800	. 808	. 956
Passenger +	132	328	460	636	61	697	25	223	248	1405
\% Passenger +	99.2	98.8	98.9	99.1	98.4	99.0	100	99.6	99.6	99.1
Heavy	1	4	5	6	1	7	0	1	1	13
\% Heavy	0.8	1.2	1.1	0.9	1.6	1.0	0	0.4	0.4	0.9

Heath \& Associates Transportation Engineering
Project: Logan's Landing
Jurisdiction: Woodland, WA
Trip Generation Summary: Scenario 1 - All Shopping Plaza

Weekday PM Peak Hour																	
Development	Land Use	Luc	Variable	Value	Rate	Distribution		Total Trips			Internal Capture		Pass-by Trips		Primary Trips		
						In	Out	In	Out	Total	\%	Total	\%	Total	In	Out	Total
Full Build-Out	Multifamily Housing (Low-Rise)	\#220	Dwelling Units	272	0.51	63\%	37\%	87.4	51.3	138.7	21.9\%	30.4	0.0\%	0.0	68.3	40.1	108.3
	Shopping Plaza (40-150k) - No Supermarket	\#821	1,000 sq. ft.	40.64	5.19	49\%	51\%	103.4	107.6	210.9	21.9\%	46.2	40.0\%	65.9	48.4	50.4	98.8
								190.7	158.9	349.6	Totals	76.6	Totals	65.9	116.7	90.5	207.2

Sources:
Institute of Transportation Engineers, Trip Generation Manual, 11th Edition, (2021).
Pass-by rates were derived from the Institute of Transportation Engineers, 2021 Pass-By Tables for ITE Trip Gen Appendices (2021)
NCHRP 8-51 Internal Trip Capture Estimation To

Heath \& Associates Transportation Engineering
Project: Logan's Landing
Jurisdiction: Woodland, WA
Trip Generation Summary: Scenario 2 - Half Office, Half Strip Retail

Sources
of Transportation Engineers, Trip Generation Manual 11th Edition, (2021).
Pass-by rates were derived from the Institute of Transportation Engineers, 2021 Pass-By Tables for ITE Trip Gen Appendices (2021)
NCHRP 8-51 Internal Trip Capture Estimation Too

NCHRP 8-51 Internal Trip Capture Estimation Tool			
Project Name:	Logan's Landing		Organization:
Project Location:	Woodland, WA	Performed By:	Peath \& Associates
Scenario Description:	Full Buildout	Date:	$7 / 15 / 2023$
Analysis Year:	2025	Checked By:	
Analysis Period:	AM Street Peak Hour	Date:	

Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips		
	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office	710	20,320	sq. ft.	30.9	27.2	3.7
Retail	822	20,320	sq. ft.	48	28.8	19.2
Restaurant				0		
Cinema/Entertainment				0		
Residential	220	272	Dwelling Units	108.8	26.1	82.7
Hotel				0		
All Other Land Uses ${ }^{2}$				0		
Total				187.7	82.1	105.6

Table 2-A: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.	\% Transit	\% Non-Motorized	Veh. Occ.	\% Transit	\% Non-Motorized
Office						
Retail						
Restaurant						
Cinema/Entertainment						
Residential						
Hotel						
All Other Land Uses ${ }^{2}$						

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)								
Origin (From)		Destination (To)						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential			
Office								
Retail								
Restaurant								
Cinema/Entertainment								
Residential								
Hotel								

Table 4-A: Internal Person-Trip Origin-Destination Matrix*								
Origin (From)		Destination (To)						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential			
Office		1	0	0	0			
Retail	1		0	0	1	0		
Restaurant	0	0		0	0			
Cinema/Entertainment	0	0	0		0			
Residential	1	1	0	0	0			
Hotel	0	0	0	0	0			

Table 5-A: Computations Summary				Table 6-A: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	188	82	106	Office	7\%	25\%
Internal Capture Percentage	5\%	6\%	5\%	Retail	7\%	11\%
				Restaurant	N/A	N/A
External Vehicle-Trips ${ }^{3}$	178	77	101	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{4}$	0	0	0	Residential	4\%	2\%
External Non-Motorized Trips ${ }^{4}$	0	0	0	Hotel	N/A	N/A

${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Informational Report, published by the Institute of Transportation Engineers.
${ }^{2}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
${ }^{3}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

${ }^{4}$ Person-Trips

*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas Transportation Institute

Project Name:	Logan's Landing					
Analysis Period:	AM Street Peak Hour					
Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends						
Land Use	Table 7-A (D): Entering Trips			Table 7-A (0): Exiting Trips		
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	27.2	27	1.00	3.7	4
Retail	1.00	28.8	29	1.00	19.2	19
Restaurant	1.00	0	0	1.00	0	0
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.00	26.1	26	1.00	82.7	83
Hotel	1.00	0	0	1.00	0	0

Table 8-A (0): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		1	3	0	0	0
Retail	6		2	0	3	0
Restaurant	0	0		0	0	0
Cinema/Entertainment	0	0	0		0	0
Residential	2	1	17	0		0
Hotel	0	0	0	0	0	

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		9	0	0	0	0
Retail	1		0	0	1	0
Restaurant	4	2		0	1	0
Cinema/Entertainment	0	0	0		0	0
Residential	1	5	0	0		0
Hotel	1	1	0	0	0	

Table 9-A (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	2	25	27	25	0	0
Retail	2	27	29	27	0	0
Restaurant	0	0	0	0	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	1	25	26	25	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

Table 9-A (0): Internal and External Trips Summary (Exiting Trips)						
Origin Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	1	3	4	3	0	0
Retail	2	17	19	17	0	0
Restaurant	0	0	0	0	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	2	81	83	81	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

${ }^{1}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

${ }^{2}$ Person-Trips

${ }^{3}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
*Indicates computation that has been rounded to the nearest whole number.

NCHRP 8-51 Internal Trip Capture Estimation Tool			
Project Name:	Logan's Landing	Organization:	Heath \& Associates
Project Location:	Woodland, WA	Performed By:	PW
Scenario Description:	Full Buildout	Date:	7/15/2023
Analysis Year:	2025	Checked By:	
Analysis Period:	PM Street Peak Hour	Date:	

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips		
	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office	710	20,320	sq. ft.	29.3	5	24.3
Retail	822	20,320	sq. ft.	134	67	67
Restaurant				0		
Cinema/Entertainment				0		
Residential	220	272	Dwelling Units	138.7	87.4	51.3
Hotel				0		
All Other Land Uses ${ }^{2}$				0		
Total				302	159.4	142.6

Table 2-P: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.	\% Transit	\% Non-Motorized	Veh. Occ.	\% Transit	\% Non-Motorized
Office						
Retail						
Restaurant						
Cinema/Entertainment						
Residential						
Hotel						
All Other Land Uses ${ }^{2}$						

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)								
Origin (From)		Destination (To)						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential			
Office								
Retail								
Restaurant								
Cinema/Entertainment								
Residential								
Hotel								

Table 4-P: Internal Person-Trip Origin-Destination Matrix*								
Origin (From)		Destination (To)						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential			
Office		5	0	0	0			
Retail	1		0	0	17	0		
Restaurant	0	0		0	0			
Cinema/Entertainment	0	0	0		0			
Residential	2	7	0	0	0			
Hotel	0	0	0	0	0			

Table 5-P: Computations Summary				Table 6-P: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	301	159	142	Office	60\%	21\%
Internal Capture Percentage	21\%	20\%	23\%	Retail	18\%	27\%
				Restaurant	N/A	N/A
External Vehicle-Trips ${ }^{3}$	237	127	110	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{4}$	0	0	0	Residential	20\%	18\%
External Non-Motorized Trips ${ }^{4}$	0	0	0	Hotel	N/A	N/A

${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Informational Report, published by the Institute of Transportation Engineers.
${ }^{2}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
${ }^{3}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

${ }^{4}$ Person-Trips

*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas Transportation Institute

Project Name:	Logan's Landing					
Analysis Period:	PM Street Peak Hour					
Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends						
Land Use	Table 7-P (D): Entering Trips			Table 7-P (O): Exiting Trips		
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	5	5	1.00	24.3	24
Retail	1.00	67	67	1.00	67	67
Restaurant	1.00	0	0	1.00	0	0
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.00	87.4	87	1.00	51.3	51
Hotel	1.00	0	0	1.00	0	0

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		5	1	0	0	0
Retail	1		19	3	17	3
Restaurant	0	0		0	0	0
Cinema/Entertainment	0	0	0		0	0
Residential	2	21	11	0		2
Hotel	0	0	0	0	0	

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		5	0	0	3	0
Retail	2		0	0	40	0
Restaurant	2	34		0	14	0
Cinema/Entertainment	0	3	0		3	0
Residential	3	7	0	0		0
Hotel	0	1	0	0	0	

Table 9-P (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	3	2	5	2	0	0
Retail	12	55	67	55	0	0
Restaurant	0	0	0	0	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	17	70	87	70	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

Table 9-P (0): Internal and External Trips Summary (Exiting Trips)						
Origin Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	5	19	24	19	0	0
Retail	18	49	67	49	0	0
Restaurant	0	0	0	0	0	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	9	42	51	42	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

${ }^{1}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

[^1]
MOVEMENT SUMMARY

- Site: 1 [1. I-5 SB Ramps \& Dike Access Road (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Existing 2023 PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance															
Mov ID		Mov Class		$\begin{aligned} & \text { land } \\ & \text { lows } \\ & \mathrm{HV}] \\ & \% \end{aligned}$	A F [Total veh/h	$\begin{aligned} & \text { rival } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{aligned} & \text { ack Of } \\ & \text { Dist] } \\ & \mathrm{ft} \end{aligned}$	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed mph
East: Dike Access Road															
1	L2	All MCs	105	5.1	105	5.1	0.330	9.8	LOS A	0.0	0.0	0.00	0.47	0.00	35.1
6	T1	All MCs	354	3.3	354	3.3	0.330	3.8	LOS A	0.0	0.0	0.00	0.47	0.00	36.0
Appr			460	3.7	460	3.7	0.330	5.2	LOS A	0.0	0.0	0.00	0.47	0.00	35.8
North: I-5 SB Off-Ramp															
7	L2	All MCs	153	9.7	153	9.7	0.380	13.4	LOS B	2.3	60.3	0.64	0.67	0.64	32.7
4	T1	All MCs	5	1.0	5	1.0	0.380	6.8	LOS A	2.3	60.3	0.64	0.67	0.64	33.6
14	R2	All MCs	195	3.3		3.3	0.380	7.1	LOS A	2.3	60.3	0.64	0.67	0.64	33.3
Approach			353	6.0	353	6.0	0.380	9.8	LOS A	2.3	60.3	0.64	0.67	0.64	33.0
West: Dike Access Road															
2	T1	All MCs	557	1.0	557	1.0	0.717	7.9	LOS A	8.7	221.1	0.80	0.68	0.91	34.2
12	R2	All MCs	244	2.6	244	2.6	0.717	8.2	LOS A	8.7	221.1	0.80	0.68	0.91	33.9
Appro			801	1.5	801	1.5	0.717	8.0	LOS A	8.7	221.1	0.80	0.68	0.91	34.1
All Ve	icles		1614	3.1	1614	3.1	0.717	7.6	LOS A	8.7	221.1	0.54	0.62	0.59	34.3

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 12:56:57 PM
Project: C:IUserslpwhalen\Heath and Associates\Traffic Studies - Documents\Sidra\5183\1. Existing 2023 PM.sip9

SITE LAYOUT

Site: 1 [1. I-5 SB Ramps \& Dike Access Road (Site Folder:
General)]
Existing 2023 PM Peak Hour
Site Category: (None)
Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

(7 Site: 2 [2. I-5 NB Ramp \& Dike Access Road (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Exsiting 2023 PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$		Mov Class		$\begin{aligned} & \text { land } \\ & \text { lows } \\ & \mathrm{HV}] \\ & \% \end{aligned}$	Ar Fl [Total veh/h	$\begin{aligned} & \text { rival } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service		$\begin{gathered} \mathrm{ck} \text { Of } \\ \text { «e } \\ \text { Dist] } \\ \mathrm{ft} \end{gathered}$	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed mph
South: I-5 NB Off-Ramp															
3	L2	All MCs	210	5.6	210	5.6	0.393	16.9	LOS B	2.5	66.3	0.80	0.79	0.84	30.5
8	T1	All MCs	1	1.0	1	1.0	0.393	10.2	LOS B	2.5	66.3	0.80	0.79	0.84	31.2
18	R2	All MCs	72	4.4	72	4.4	0.393	10.8	LOS B	2.5	66.3	0.80	0.79	0.84	30.9
Appro			283	5.3	283	5.3	0.393	15.3	LOS B	2.5	66.3	0.80	0.79	0.84	30.6
East: Dike Access Road															
6	T1	All MCs	221	3.8	221	3.8	0.341	7.3	LOS A	2.2	56.5	0.70	0.64	0.70	34.5
16	R2	All MCs	76	5.6	76	5.6	0.341	7.6	LOS A	2.2	56.5	0.70	0.64	0.70	34.1
Approach			297	4.3	297	4.3	0.341	7.4	LOS A	2.2	56.5	0.70	0.64	0.70	34.4
West: Dike Access Road															
5	L2	All MCs	310	3.1	310	3.1	0.569	9.7	LOS A	0.0	0.0	0.00	0.53	0.00	34.7
2	T1	All MCs	487	2.8	487	2.8	0.569	3.7	LOS A	0.0	0.0	0.00	0.53	0.00	35.6
Appro			797	2.9	797	2.9	0.569	6.1	LOS A	0.0	0.0	0.00	0.53	0.00	35.2
All Ve	icles		1377	3.7	1377	3.7	0.569	8.2	LOS A	2.5	66.3	0.32	0.60	0.32	34.0

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 1:01:18 PM
Project: C:\Users\pwhalen\Heath and Associates\Traffic Studies - Documents\Sidra\5183\1. Existing 2023 PM.sip9

SITE LAYOUT

(7) Site: 2 [2. I-5 NB Ramp \& Dike Access Road (Site Folder:

General)]
Exsiting 2023 PM Peak Hour
Site Category: (None)
Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Intersection						

| Intersection | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

6: Old Pacific Hwy \& E Scott Ave

Intersection	
Intersection Delay, s/veh 11.6	
Intersection LOS	B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\$			¢	
Traffic Vol, veh/h	35	15	20	6	57	182	2	4	0	218	107	75
Future Vol, veh/h	35	15	20	6	57	182	2	4	0	218	107	75
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles, \%	3	20	1	1	2	3	1	25	1	2	1	8
Mvmt Flow	36	15	21	6	59	188	2	4	0	225	110	77
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay, s/veh	8.9			9.9			8.4			13.2		
HCM LOS	A			A			A			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	33%	50%	2%	55%
Vol Thu, \%	67%	21%	23%	27%
Vol Right, \%	0%	29%	74%	19%
Sign Control	6 Stop	Stop	Stop	Stop
Traffic Vol by Lane	6	70	245	400
LT Vol	2	35	6	218
Through Vol	4	15	57	107
RT Vol	0	20	182	75
Lane Flow Rate	6	72	253	412
Geometry Grp	1	1	1	1
Degree of Util (X)	0.009	0.105	0.323	0.538
Departure Headway (Hd)	5.273	5.22	4.597	4.695
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	671	681	778	763
Service Time	3.366	3.296	2.653	2.756
HCM Lane V/C Ratio	0.009	0.106	0.325	0.54
HCM Control Delay, s/veh	8.4	8.9	9.9	13.2
HCM Lane LOS	A	A	A	B
HCM 95th-tile Q	0	0.4	1.4	3.3

MOVEMENT SUMMARY

- Site: 7 [3. E Scott Ave \& Lewis River Road (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Existing 2023 PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance															
$\begin{array}{\|l} \hline \text { Mov } \\ \text { ID } \end{array}$	Turn	Mov Class		$\begin{aligned} & \text { nand } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$		rival ows HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service		afk ue Dist] ft	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed mph
South: Lewis River Road															
3	L2	All MCs	65	1.6	65	1.6	0.613	11.7	LOS B	5.4	136.4	0.65	0.55	0.65	34.2
18a	R1	All MCs	669	1.0	669	1.0	0.613	5.0	LOS A	5.4	136.4	0.65	0.55	0.65	35.0
Appro			733	1.1	733	1.1	0.613	5.6	LOS A	5.4	136.4	0.65	0.55	0.65	34.9
NorthEast: Lewis River Road															
1ax	L1	All MCs	346	1.2	346	1.2	0.355	9.0	LOS A	2.6	64.5	0.28	0.53	0.28	33.7
16ax	R1	All MCs	139	1.0	139	1.0	0.355	3.5	LOS A	2.6	64.5	0.28	0.53	0.28	34.5
Approach			484	1.1	484	1.1	0.355	7.4	LOS A	2.6	64.5	0.28	0.53	0.28	33.9
West: E Scott Avenue															
5a	L1	All MCs	233	1.0	233	1.0	0.236	10.4	LOS B	1.4	35.4	0.53	0.64	0.53	32.6
12	R2	All MCs	26	1.0	26	1.0	0.236	5.5	LOS A	1.4	35.4	0.53	0.64	0.53	33.0
Appro			259		259	1.0	0.236	9.9	LOS A	1.4	35.4	0.53	0.64	0.53	32.7
All Ve	icles		1477	1.1	1477	1.1	0.613	6.9	LOS A	5.4	136.4	0.51	0.56	0.51	34.2

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 1:08:43 PM
Project: C:\Users\pwhalen\Heath and Associates\Traffic Studies - Documents\Sidra\5183\1. Existing 2023 PM.sip9

SITE LAYOUT

© Site: 7 [3. E Scott Ave \& Lewis River Road (Site Folder:
General)]
Existing 2023 PM Peak Hour
Site Category: (None)
Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

∇ Site: 1 [1. I-5 SB Ramps \& Dike Access Road (Site Folder:
 Forecast 2026 Without Project)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Existing 2023 PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance															
Mov ID		Mov Class		$\begin{aligned} & \text { and } \\ & \text { ows } \\ & \text { HV] } \\ & \% \end{aligned}$	Ar Fl [Total veh/h	$\begin{aligned} & \text { rival } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{aligned} & \text { afk Of } \\ & \text { Dist] } \\ & \text { ft } \end{aligned}$	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed mph
East: Dike Access Road															
1	L2	All MCs	124	5.1	124	5.1	0.366	9.8	LOS A	0.0	0.0	0.00	0.48	0.00	35.1
6	T1	All MCs	385	3.3	385	3.3	0.366	3.8	LOS A	0.0	0.0	0.00	0.48	0.00	36.0
Appr			510	3.7	510	3.7	0.366	5.3	LOS A	0.0	0.0	0.00	0.48	0.00	35.8
North: l-5 SB Off-Ramp															
7	L2	All MCs	177	9.7	177	9.7	0.437	14.2	LOS B	2.8	73.7	0.70	0.70	0.71	32.3
4	T1	All MCs	5	1.0	5	1.0	0.437	7.5	LOS A	2.8	73.7	0.70	0.70	0.71	33.2
14	R2	All MCs	209	3.3		3.3	0.437	7.8	LOS A	2.8	73.7	0.70	0.70	0.71	32.9
Approach			390	6.2	390	6.2	0.437	10.7	LOS B	2.8	73.7	0.70	0.70	0.71	32.6
West: Dike Access Road															
2	T1	All MCs	604	1.0	604	1.0	0.804	10.9	LOS B	12.7	320.7	0.93	0.83	1.20	33.0
12	R2	All MCs	261	2.6	261	2.6	0.804	11.1	LOS B	12.7	320.7	0.93	0.83	1.20	32.7
Appro			865	1.5	865	1.5	0.804	11.0	LOS B	12.7	320.7	0.93	0.83	1.20	32.9
All Ve	icles		1765	3.2	1765	3.2	0.804	9.3	LOS A	12.7	320.7	0.61	0.70	0.74	33.6

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 3:35:55 PM
Project: C:\Users\pwhalen\Heath and Associates\Canon Scans - Documents\Logan's Landing\LOS 2023\2. Forecast 2026 Without Project.sip9

MOVEMENT SUMMARY

Fite: 2 [2. I-5 NB Ramp \& Dike Access Road (Site Folder:
 Forecast 2026 Without Project)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Exsiting 2023 PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Mov Class		$\begin{aligned} & \text { land } \\ & \text { lows } \\ & \mathrm{HV}] \\ & \% \end{aligned}$	Ar Fl [Total veh/h	$\begin{aligned} & \text { rival } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \mathrm{ck} \text { Of } \\ \text { «e } \\ \text { Dist] } \\ \mathrm{ft} \end{gathered}$	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed mph
South: I-5 NB Off-Ramp															
3	L2	All MCs	224	5.6	224	5.6	0.477	19.9	LOS B	3.7	96.7	0.86	0.87	1.06	29.4
8	T1	All MCs	1	1.0	1	1.0	0.477	13.2	LOS B	3.7	96.7	0.86	0.87	1.06	30.0
18	R2	All MCs	96	4.4	96	4.4	0.477	13.8	LOS B	3.7	96.7	0.86	0.87	1.06	29.7
Appro			321	5.2	321	5.2	0.477	18.1	LOS B	3.7	96.7	0.86	0.87	1.06	29.5
East: Dike Access Road															
6	T1	All MCs	254	3.8	254	3.8	0.410	7.8	LOS A	2.8	71.5	0.76	0.67	0.76	34.3
16	R2	All MCs	89	5.6	89	5.6	0.410	8.1	LOS A	2.8	71.5	0.76	0.67	0.76	33.9
Approach			344	4.3	344	4.3	0.410	7.9	LOS A	2.8	71.5	0.76	0.67	0.76	34.2
West: Dike Access Road															
5	L2	All MCs	332	3.1	332	3.1	0.623	9.7	LOS A	0.0	0.0	0.00	0.52	0.00	34.8
2	T1	All MCs	541	2.8	541	2.8	0.623	3.7	LOS A	0.0	0.0	0.00	0.52	0.00	35.6
Appro			873	2.9	873	2.9	0.623	6.0	LOS A	0.0	0.0	0.00	0.52	0.00	35.3
All Ve	icles		1538	3.7	1538	3.7	0.623	9.0	LOS A	3.7	96.7	0.35	0.63	0.39	33.6

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 3:37:06 PM
Project: C:IUsers\pwhalen\Heath and Associates\Canon Scans - Documents\Logan's LandinglLOS 202312. Forecast 2026 Without Project.sip9

Intersection						
Int Delay, s/veh	3.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Min		b			\uparrow
Traffic Vol, veh/h	35	96	148	65	154	412
Future Vol, veh/h	35	96	148	65	154	412
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	4	9	4	1	4	3
Mvmt Flow	37	102	157	69	164	438

Intersection	
Intersection Delay, s/veh	12.7
Intersection LOS	B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			¢			\$			\uparrow	
Traffic Vol, veh/h	37	16	21	6	61	208	2	4	0	234	121	80
Future Vol, veh/h	37	16	21	6	61	208	2	4	0	234	121	80
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles, \%	3	20	,	1	2	3	1	25	1	2	1	8
Mvmt Flow	38	16	22	6	63	214	2	4	0	241	125	82
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay, s/veh	9.2			10.5			8.6			14.8		
HCM LOS	A			B			A			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	33%	50%	2%	54%
Vol Thu, \%	67%	22%	22%	28%
Vol Right, \%	0%	28%	76%	18%
Sign Control	6 Stop	Stop	Stop	Stop
Traffic Vol by Lane	6	74	275	435
LT Vol	2	37	6	234
Through Vol	4	16	61	121
RT Vol	0	21	208	80
Lane Flow Rate	6	76	284	448
Geometry Grp	1	1	1	1
Degree of Util (X)	0.01	0.114	0.37	0.596
Departure Headway (Hd)	5.551	5.376	4.701	4.787
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	649	659	760	749
Service Time	3.551	3.472	2.772	2.862
HCM Lane V/C Ratio	0.009	0.115	0.374	0.598
HCM Control Delay, s/veh	8.6	9.2	10.5	14.8
HCM Lane LOS	A	A	B	B
HCM 95th-tile Q	0	0.4	1.7	4

MOVEMENT SUMMARY

∇ Site: 7 [3. E Scott Ave \& Lewis River Road (Site Folder: Forecast 2026 Without Project)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Existing 2023 PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance															
Mov ID		Mov Class		$\begin{aligned} & \text { land } \\ & \text { lows } \\ & \mathrm{HV} \text {] } \\ & \% \end{aligned}$	A F [Total veh/h	$\begin{aligned} & \text { rival } \\ & \text { ows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec \qquad	Level of Service		$\begin{gathered} \text { ck Of } \\ \text { ue } \\ \text { Dist] } \\ \text { ft } \end{gathered}$	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed mph
South: Lewis River Road															
3	L2	All MCs	79	1.6	79	1.6	0.742	13.8	LOS B	9.4	238.0	0.81	0.67	0.91	33.6
18a	R1	All MCs	779	1.0	779	1.0	0.742	7.1	LOS A	9.4	238.0	0.81	0.67	0.91	34.4
Appro			858	1.1	858	1.1	0.742	7.7	LOS A	9.4	238.0	0.81	0.67	0.91	34.3
NorthEast: Lewis River Road															
1ax	L1	All MCs	407	1.2	407	1.2	0.423	9.1	LOS A	3.4	86.3	0.35	0.53	0.35	33.5
16ax	R1	All MCs	159	1.0	159	1.0	0.423	3.7	LOS A	3.4	86.3	0.35	0.53	0.35	34.3
Approach			567	1.1	567	1.1	0.423	7.6	LOS A	3.4	86.3	0.35	0.53	0.35	33.8
West: E Scott Avenue															
5a	L1	All MCs	266	1.0	266	1.0	0.283	10.9	LOS B	1.8	44.7	0.60	0.66	0.60	32.5
12	R2	All MCs	28	1.0	28	1.0	0.283	6.0	LOS A	1.8	44.7	0.60	0.66	0.60	32.9
Appro			294	1.0	294	1.0	0.283	10.4	LOS B	1.8	44.7	0.60	0.66	0.60	32.5
All Ve	icles		1719	1.1	1719	1.1	0.742	8.1	LOS A	9.4	238.0	0.62	0.62	0.67	33.8

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 3:37:44 PM
Project: C:IUsers\pwhalen\Heath and Associates\Canon Scans - Documents\Logan's Landing\LOS 2023\2. Forecast 2026 Without Project.sip9

MOVEMENT SUMMARY

∇ Site: 1 [1. I-5 SB Ramps \& Dike Access Road (Site Folder:
 Forecast 2026 With Project)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Forecast 2026 PM Peak Hour With Project
Site Category: (None)
Roundabout

Vehicle Movement Performance															
Mov ID		Mov Class		$\begin{aligned} & \text { land } \\ & \text { lows } \\ & \mathrm{HV}] \\ & \% \end{aligned}$	Ar Fl [Total veh/h	$\begin{aligned} & \text { rival } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service		$\begin{aligned} & \text { ck Of } \\ & \text { ue } \\ & \text { Dist] } \\ & \text { ft } \end{aligned}$	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed mph
East: Dike Access Road															
1	L2	All MCs	159	5.1	159	5.1	0.401	9.8	LOS A	0.0	0.0	0.00	0.49	0.00	35.0
6	T1	All MCs	399	3.3	399	3.3	0.401	3.8	LOS A	0.0	0.0	0.00	0.49	0.00	35.9
Appr			557	3.8	557	3.8	0.401	5.5	LOS A	0.0	0.0	0.00	0.49	0.00	35.6
North: I-5 SB Off-Ramp															
7	L2	All MCs	204	9.7	204	9.7	0.488	15.6	LOS B	3.6	93.5	0.75	0.76	0.84	31.6
4	T1	All MCs	5	1.0	5	1.0	0.488	8.7	LOS A	3.6	93.5	0.75	0.76	0.84	32.5
14	R2	All MCs	209	3.3	209	3.3	0.488	9.0	LOS A	3.6	93.5	0.75	0.76	0.84	32.2
Approach			418	6.4	418	6.4	0.488	12.2	LOS B	3.6	93.5	0.75	0.76	0.84	31.9
West: Dike Access Road															
2	T1	All MCs	621	1.0	621	1.0	0.868	15.2	LOS D	16.8	424.6	1.00	1.03	1.52	31.0
12	R2	All MCs	261	2.6	261	2.6	0.868	15.5	LOS D	16.8	424.6	1.00	1.03	1.52	30.7
Appro			882	1.5	882	1.5	0.868	15.3	LOS B	16.8	424.6	1.00	1.03	1.52	30.9
All Ve	icles		1857	3.3	1857	3.3	0.868	11.7	LOS B	16.8	424.6	0.64	0.81	0.91	32.4

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 3:59:19 PM
Project: C:\Users\pwhalen\Heath and AssociatesITraffic Studies - DocumentsISidra\5183l3. Forecast 2026 With Project.sip9

MOVEMENT SUMMARY

∇ Site: 2 [2. I-5 NB Ramp \& Dike Access Road (Site Folder:
 Forecast 2026 With Project)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Forecast 2028 PM Peak Hour With Project
Site Category: (None)
Roundabout

Vehicle Movement Performance															
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Mov Class		$\begin{aligned} & \text { land } \\ & \text { lows } \\ & \mathrm{HV}] \\ & \% \end{aligned}$	Ar Fl [Total veh/h	$\begin{aligned} & \text { rrival } \\ & \text { lows } \\ & H V \text {] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{array}$	$\begin{aligned} & \text { ck Of } \\ & \text { ue } \\ & \text { Dist] } \\ & \text { ft } \end{aligned}$	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed mph
South: I-5 NB Off-Ramp															
3	L2	All MCs	224	5.6	224	5.6	0.556	23.1	LOS C	5.0	131.1	0.91	0.95	1.27	28.4
8	T1	All MCs	1	1.0	1	1.0	0.556	16.3	LOS B	5.0	131.1	0.91	0.95	1.27	29.0
18	R2	All MCs	134	4.4	134	4.4	0.556	17.0	LOS B	5.0	131.1	0.91	0.95	1.27	28.7
Appro			360	5.1	360	5.1	0.556	20.8	LOS C	5.0	131.1	0.91	0.95	1.27	28.5
East: Dike Access Road															
6	T1	All MCs	302	3.8	302	3.8	0.498	9.0	LOS A	4.0	102.2	0.80	0.73	0.89	33.9
16	R2	All MCs	114	5.6	114	5.6	0.498	9.2	LOS A	4.0	102.2	0.80	0.73	0.89	33.5
Approach			416	4.3	416	4.3	0.498	9.0	LOS A	4.0	102.2	0.80	0.73	0.89	33.8
West: Dike Access Road															
5	L2	All MCs	332	3.1	332	3.1	0.655	9.7	LOS A	0.0	0.0	0.00	0.52	0.00	34.8
2	T1	All MCs	586	2.8	586	2.8	0.655	3.7	LOS A	0.0	0.0	0.00	0.52	0.00	35.6
Appro			918	2.9	918	2.9	0.655	5.9	LOS A	0.0	0.0	0.00	0.52	0.00	35.3
All Ve	icles		1694	3.7	1694	3.7	0.655	9.8	LOS A	5.0	131.1	0.39	0.66	0.49	33.3

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 4:00:22 PM
Project: C:\Users\pwhalen\Heath and AssociatesITraffic Studies - Documents\Sidra\5183l3. Forecast 2026 With Project.sip9

Intersection						

Intersection	
Intersection Delay, s/veh	13.8
Intersection LOS	B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			¢			¢			¢	
Traffic Vol, veh/h	37	16	21	6	61	234	2	4	0	239	139	80
Future Vol, veh/h	37	16	21	6	61	234	2	4	0	239	139	80
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles, \%	3	20	1	1	2	3	1	25	1	2	1	8
Mvmt Flow	38	16	22	6	63	241	2	4	0	246	143	82
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay, s/veh	9.4			11.2			8.8			16.2		
HCM LOS	A			B			A			C		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	33%	50%	2%	52%
Vol Thru, \%	67%	22%	20%	30%
Vol Right, \%	0%	28%	78%	17%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	6	74	301	458
LT Vol	2	37	6	239
Through Vol	4	16	61	139
RT Vol	0	21	234	80
Lane Flow Rate	6	76	310	472
Geometry Grp	1	1	1	1
Degree of Util (X)	0.01	0.119	0.41	0.637
Departure Headway (Hd)	5.689	5.604	4.762	4.859
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	632	644	748	737
Service Time	3.696	3.604	2.846	2.948
HCM Lane V/C Ratio	0.009	0.118	0.414	0.64
HCM Control Delay, s/veh	8.8	9.4	11.2	16.2
HCM Lane LOS	A	A	B	C
HCM 95th-tile Q	0	0.4	2	4.6

MOVEMENT SUMMARY

∇ Site: 7 [3. E Scott Ave \& Lewis River Road (Site Folder: Forecast 2026 With Project)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210
Forecast 2028 PM Peak Hour With Project
Site Category: (None)
Roundabout

Vehicle Movement Performance															
$\begin{array}{\|l\|} \hline \text { Mov } \\ \text { ID } \end{array}$	Turn	Mov Class		$\begin{aligned} & \text { nand } \\ & \text { lows } \\ & \text { HV] } \\ & \% \end{aligned}$		rival lows HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% [Veh. veh	of ue Dist] ft	Prop. Que	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. of Cycles	Aver. Speed mph
South: Lewis River Road															
3	L2	All MCs	101	1.6	101	1.6	0.764	14.3	LOS B	10.4	262.2	0.85	0.70	0.97	33.5
18a	R1	All MCs	779	1.0	779	1.0	0.764	7.6	LOS A	10.4	262.2	0.85	0.70	0.97	34.2
Appro			880	1.1	880	1.1	0.764	8.3	LOS A	10.4	262.2	0.85	0.70	0.97	34.1
NorthEast: Lewis River Road															
1ax	L1	All MCs	407	1.2	407	1.2	0.436	9.2	LOS A	3.5	89.5	0.40	0.54	0.40	33.4
16ax	R1	All MCs	165	1.0	165	1.0	0.436	3.8	LOS A	3.5	89.5	0.40	0.54	0.40	34.2
Approach			572	1.1	572	1.1	0.436	7.7	LOS A	3.5	89.5	0.40	0.54	0.40	33.7
West: E Scott Avenue															
5a	L1	All MCs	271	1.0	271	1.0	0.289	10.9	LOS B	1.8	46.4	0.61	0.66	0.61	32.5
12	R2	All MCs	28	1.0	28	1.0	0.289	6.0	LOS A	1.8	46.4	0.61	0.66	0.61	32.9
Appro			299	1.0	299	1.0	0.289	10.4	LOS B	1.8	46.4	0.61	0.66	0.61	32.5
All Ve	icles		1751	1.1	1751	1.1	0.764	8.5	LOS A	10.4	262.2	0.66	0.64	0.72	33.7

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v/c not used).
Roundabout Capacity Model: SIDRA HCM.
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HEATH \& ASSOCIATES | Licence: PLUS / 1PC | Processed: Tuesday, July 25, 2023 4:01:18 PM
Project: C:IUsers\pwhalen\Heath and Associates\Traffic Studies - Documents\Sidral5183l3. Forecast 2026 With Project.sip9

Intersection						

Exhibit 1310-7 Left-Turn Storage Guidelines: Two-Lane, Unsignalized

[^0]: ${ }^{2}$ An internal link reduction of 5.1% was applied to all proposed on-site land uses for the AM peak hour and 21.5% for the PM peak hour, which was derived via the NCHRP 8-51 Internal Trip Capture Estimation Tool. ADT internal capture rates were derived by taking the average of the AM and PM peak hours (13.3\%).
 3 Pass-by rates were derived from the Institute of Transportation Engineers, 2021 Pass-By Tables for ITE Trip Gen Appendices (2021). As no pass-by data is available for LUC 822 - Strip Retail Plaza ($<40 \mathrm{k}$), data for LUC 821 - Shopping Plaza (40-150k) was utilized. PM Rate: 40%. This rate was applied to ADT and AM.

[^1]: ${ }^{2}$ Person-Trips
 ${ }^{3}$ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
 *Indicates computation that has been rounded to the nearest whole number.

