WOODLAND’S DRINKING WATER SURPASSES ALL STATE AND FEDERAL HEALTH STANDARDS

The city of Woodland’s water quality report is here to inform you, the consumer, about the city of Woodland’s public water system. This annual publication gives the consumer mandatory information regulated by State Department of Health (DOH) as well as the Environmental Protection Agency (EPA).

The city of Woodland supports the consumer’s right to know the results of our water quality monitoring and encourages you to attend our city council meetings with any questions or ideas on how to help preserve our water resources. City council meetings are held at 200 East Scott Avenue on the 1st and 3rd Monday of every month at 7 P.M.

“We are proud to say our water treatment plant exceeds state regulatory requirements”
– Tracy Coleman, Woodland Public Works Director

Where Does Woodland’s Public Water Come From?

The source of Woodland’s water supply is the aquifer beneath the North Fork of the Lewis River. Our water collection system, the Ranney Well, is a horizontal collector well. It is located below the river bottom and is relatively safe from any potential contamination or flooding damage which may take place in the river. The Lewis River watershed is fed by glacier melt from Mt. Adams and smaller tributaries such as Cedar Creek. The Lewis River is one of the cleanest and most pristine rivers in the region; however, the source is naturally high in iron.
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material. It can also pick up substances resulting from the presence of animals or from human activity. All types of drinking water is expected to have a small amount of contaminants within its molecules. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline.

Contaminants that may be present in water source BEFORE we treat it.
- Microbial contaminants: such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agriculture livestock operations and wildlife.
- Inorganic contaminants: such as salts and metals, which can be natural occurring or a result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, and mining or farming.
- Pesticides and herbicides: which may come from a variety of sources such as agriculture and residential uses.
- Radio-active contaminants: which are natural occurring.
- Organic Chemical contaminants: including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm runoff, and septic systems.

Some people may be vulnerable to contaminants in drinking water than the general population. Such as people with cancer undergoing chemotherapy, people who have undergone organ transplant, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

To ensure the Security and emergency response are essential in proper management of our drinking water system. We have complied with the required system vulnerability assessment and have submitted an emergency water system response plan to the Environmental Protection Agency (EPA).

Definitions & Abbreviations
- Synthetic Organic Compounds (SOC's): A class of man-made contaminants including herbicides, pesticides, and other chemicals that come from agriculture, urban storm water runoff, or industrial activities.
- Volatile Organic Compounds (VOC's): Chemical solvents or cleaners (and their byproducts) that are derived from petroleum products; man-made contaminants from industrial processes.
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water.
- MFL (million fibers per liter): A measure of the presence of asbestos fibers that are longer than 10 micrometers.
- mg/L (Milligrams per liter): Approximately equal to parts per million (PPM) or 1 milliliter per 1,000 liters of water.
- ug/L (Micrograms per liter): Approximately equal to parts per billion (PPB) or 1 milliliter per 1,000,000 liters of water.
- pCi/L (Picocuries per liter): A measure of radioactivity.
- Ppb (Parts Per Billion): One part substance per billion parts water.
- PPM (Parts Per Million): One Part substance per million parts water.
- AL (Action Level): The concentration of a contaminant which, if exceeded triggers treatment or other requirements that a water system must follow.
- MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- MRDL (Maximum Residential Disinfectant Level Goal): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary for control of microbial contaminants.
- MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- ND (Not Detected): Indicates that the substance was not found by a laboratory analysis.
- NTU (Nephelometric Turbidity Units): Measurements of clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- Removal Ratio: A ratio between the percentages of a substance actually removed to the percentage required to be removed. TI (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.
IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Monitoring Requirements Not Met. City of Woodland Water System (ID #98200) – Cowlitz County

Our water system has violated surface water treatment monitoring requirements. Even though these were not emergencies, as our customers, you have a right to know what happened and what we did to correct these situations.

We are required to monitor the water from its source, the Lewis River, at the Ranney well. This is known as our raw water. Raw water is pumped from the Ranney well to the Water Treatment Plant, treated and tested, prior to being sent through the distribution system to your homes. We missed sampling the raw water at the Ranney well for a short period of time – March 2017-September 2018. Again, this is raw water prior to it being pumped to the Water Treatment Plant. The previous tests and current tests have shown no detection of fecal coliforms in the raw water. Our water source, in general, has not shown any detections for fecal coliforms. The monitoring period was to be August 2016 and continue for 26 months. All treated water has satisfactorily met all Department of Health guidelines.

What should I do? There is nothing you need to do at this time.

What is being done? We have extended our testing timeline. We are required to collect samples every month for a period of 26 months. Samples were received from August 2016-February 2017. We will extend our sampling time through July 14, 2020. For more information, please contact Tracy Coleman, Public Works Director, 360-225-7999.

WATER QUALITY MONITORING RESULTS

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MOST RECENT TEST</th>
<th>UNIT</th>
<th>DETECTED LEVEL</th>
<th>MCL or MRDL</th>
<th>MRDLG or MCLG</th>
<th>MAJOR SOURCE(S)</th>
<th>VIOLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead*</td>
<td>8/2/2018</td>
<td>ppb</td>
<td>N/D</td>
<td>Action Level 15</td>
<td>0</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
<td>None</td>
</tr>
<tr>
<td>Copper*</td>
<td>8/2/2018</td>
<td>ppm</td>
<td>0.042</td>
<td>Action Level 1500</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.</td>
<td>None</td>
</tr>
</tbody>
</table>

DISINFECTION BYPRODUCTS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Test Date</th>
<th>Unit</th>
<th>Value</th>
<th>Action Level</th>
<th>Standard</th>
<th>Source Description</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acid**</td>
<td>11/4/2019</td>
<td>ppb</td>
<td>10.6</td>
<td>60</td>
<td>60</td>
<td>By-product of chlorination used for drinking water disinfection.</td>
<td>None</td>
</tr>
<tr>
<td>Total Trihalomethanes*</td>
<td>11/4/2019</td>
<td>ppb</td>
<td>19.5</td>
<td>80</td>
<td>N/A</td>
<td>By-product of chlorination used for drinking water disinfection.</td>
<td>None</td>
</tr>
</tbody>
</table>

RADIOACTIVITY

- Gross Alpha
- Combined Radium

INORGANIC CHEMICALS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Test Date</th>
<th>Unit</th>
<th>Value</th>
<th>Action Level</th>
<th>Standard</th>
<th>Source Description</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>10/11/2016</td>
<td>ppb</td>
<td>0.001</td>
<td>10</td>
<td>0</td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.</td>
<td>None</td>
</tr>
<tr>
<td>Nitrate</td>
<td>3/28/2019</td>
<td>ppm</td>
<td>N/D</td>
<td>10</td>
<td>N/A</td>
<td>Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.</td>
<td>None</td>
</tr>
</tbody>
</table>

UNREGISTERED VOLATILE ORGANIC COMPOUNDS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Test Date</th>
<th>Unit</th>
<th>Value</th>
<th>Action Level</th>
<th>Standard</th>
<th>Source Description</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform</td>
<td>6/5/2019</td>
<td>ppb</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
<td>Unregulated contaminates are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to help EPA determine their occurrence in drinking water and potential need for future regulation.</td>
<td>None</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>6/5/2019</td>
<td>ppb</td>
<td>4.4</td>
<td>-</td>
<td>-</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>6/5/2019</td>
<td>ppb</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

* Lead and copper samples are collected from homes rather than at the treatment plant. 20-samples were analyzed by an independent laboratory for both lead and copper. Violations are subject to action levels. An action level is the concentration of a contaminant that triggers additional treatment or other actions that a water system must perform.

** This value is the average of all samples at all sampling points during the year of the most recent test. The range of individual results for that year is shown below the average.
Beneﬁts of Chlorination

The chemical process of disinfecting drinking water from microorganisms is the most important step in delivering clean drinking water to our consumers. Chlorination is the most common method of disinfectant in North America.

Before cities in the United States began routinely treating drinking water with chlorine dangerous diseases such as Cholera, Typhoid Fever, Dysentery, and Hepatitis A, killed thousands of U.S. residents annually. Drinking water chlorination has helped us virtually eliminate these diseases in the United States. This simple process is one of the greatest advancements in human history.

How Chlorination works

Potent Germicide Reduction in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.

Taste and odor reduction of many disagreeable tastes and odors like foul-smelling algae secretions, sulfides, and odors from decaying vegetation.

Biological Growth Elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.

Chemical removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant

Cross Connection Concerns

How treated water contamination occurs...

Drinking water normally flows in one direction, from the City’s Water system into the consumer’s cold water plumbing to a hot water tank and various fixtures/faucets. A fixture is the end of the consumer’s plumbing system, where the water is consumed or used.

Under certain conditions, water could flow in the reverse direction- this is known as backflow. Backflow may occur when there is a loss of pressure in the City’s water system due to a high use in the community, firefighting activities, or a water main break, this creates a vacuum in the City’s piping. Any fixture connected to an appliance or house could allow dirty or used water to be sucked back in the consumer’s plumbing and water system. Pressurized systems or devices in the consumer’s plumbing could also force dirty or used water into the City’s water system.

How to protect the public water system...

In general, installation of plumbing in compliance with the plumbing code will provide adequate protection in your home’s plumbing system to prevent contamination. However, many commercial and residential customers are required to install appropriate backflow prevention devices depending on the degree of hazard. To determine if a backflow assembly is required on your water service for protection of the public water system, please contact the City of Woodland’s Public Works office.